Workshop on AERODYNAMIC ISSUES OF UNMANNED AIR VEHICLES 4-5 November 2002, University of Bath, United Kingdom

Air Intakes for Subsonic UCAV Applications - Some Design Considerations

Peter G Martin

Defence Science and Technology Laboratory

UK

Tel: +44 (0)1234 716442

pgmartin@dstl.gov.uk

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 26 JUL 2004		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Air Intakes for Subsonic UCAV Applications -Some Design Considerations				5b. GRANT NUMBER		
Constact anons				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence Science and Technology Laboratory UK				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 85, CSP 02-5078, Pr al document contain	~	dynamic Issues of	Unmanned A	Air Vehicles	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 23	RESPONSIBLE PERSON	

Report Documentation Page

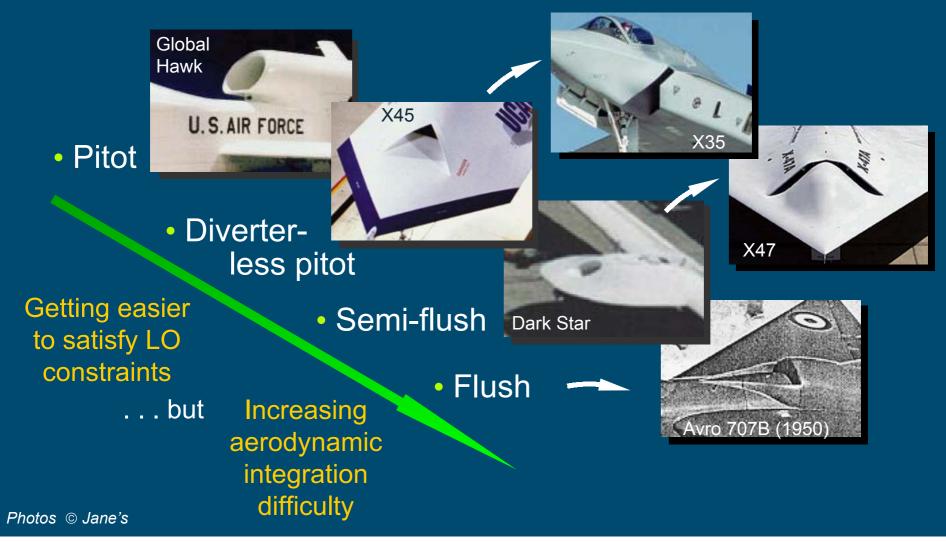
Form Approved OMB No. 0704-0188

Outline

- Some first expectations from theory
- Practical considerations
- Research requirements

Mission Assumptions

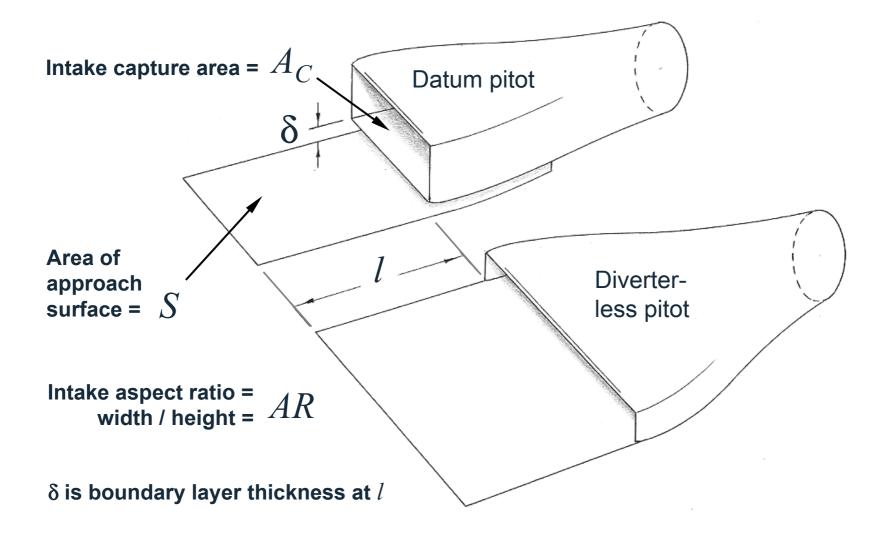
- Modest manoeuvre requirements
- Subsonic cruise



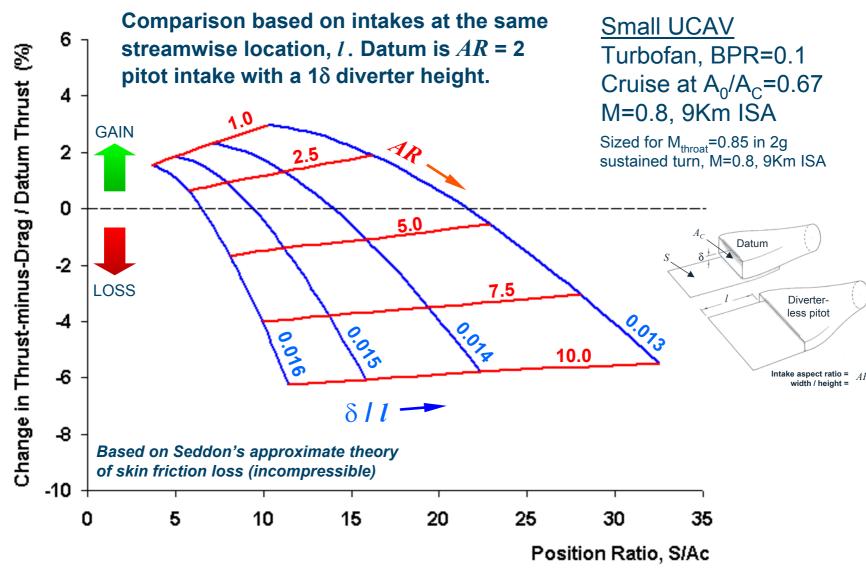
What's New?

- Some additional positioning and packaging freedoms
 - Upper surface front position is available
- . . . But many new constraints due to a need for low observability
 - No diverter
 - High lip sweep / edge alignment
 - Engine compressor face obscuration
 - Fixed geometry and no auxiliary intakes (ideally)

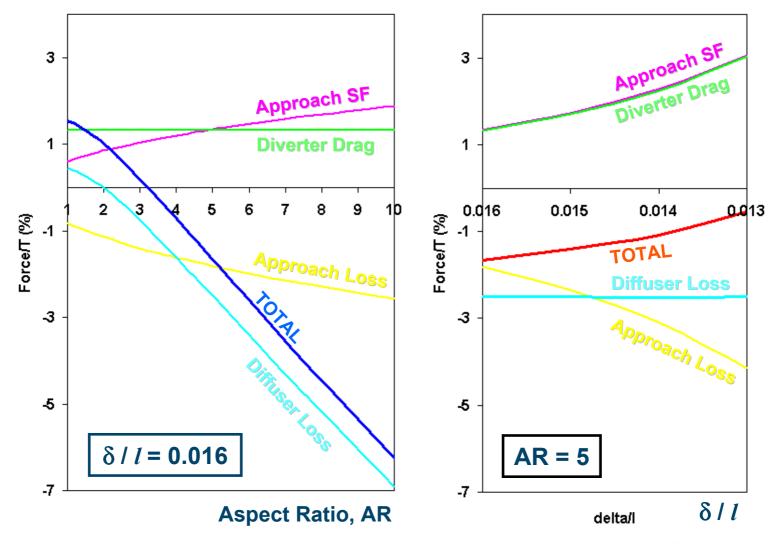
Intake Configuration Examples


Vehicle Packaging

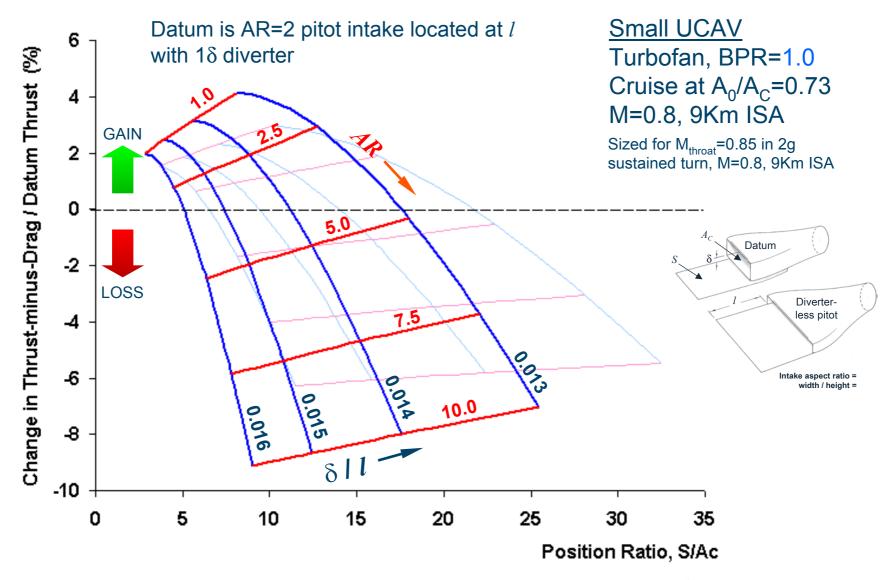
- Tendency for fuel, releasable payload and engine to need to be near to the CG
- Intake options
 - At or near to the front of the vehicle
 - ... but avoiding wing leading-edge vortex ingestion
- Diffuser options:
 - Very short diffusers with compressor-face screening devices
 - Short, highly off-set, obscuring diffusers

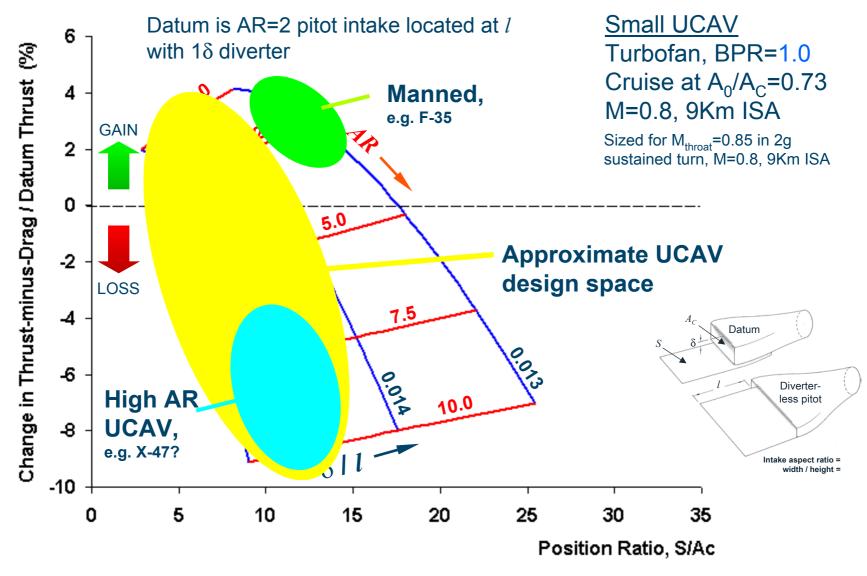

Idealised Pitot Intakes

Divert, Ingest or a Bit of Both?

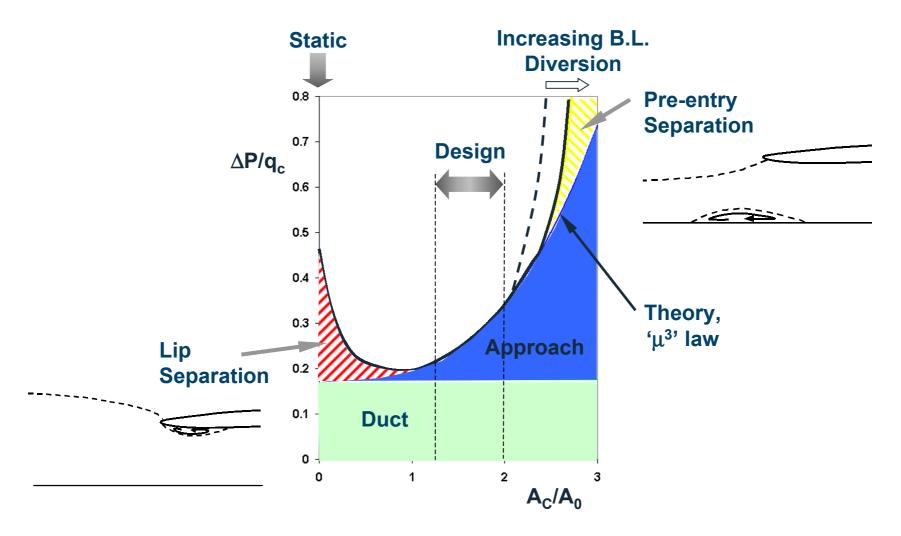


Contributions to $\Delta(T-D)/T$


BPR = 0.1


Divert, Ingest or a Bit of Both?

Divert, Ingest or a Bit of Both?



Avoidance of Distortion and Swirl

- Boundary layer ingestion can look like a good idea in principle but:
 - Distorted flow at the diffuser entry can adversely influence the diffuser flow
 - . . . leading to additional loss, increased distortion and swirl at the compressor face
- The classical diverter gap is a convenient way of avoiding this problem and is seen on almost all non-LO aircraft that operate above M=0.6

Flow Capture Ratio Effects

Pre-Entry Separation Problem

- Design for operation at higher cruise mass flow ratio than normal will lead to :
 - Lower spillage drag at cruise
- . . . but increased losses at all conditions due to:
 - A smaller intake capture area with higher throat Mach number
 - An increased internal diffusion requirement
- Static/take-off or manoeuvre thrust requirement and cruise performance requirement are thus likely to conflict

Research Requirements: Intake Pre-Entry Flows

- Ways of controlling the pre-entry flow e.g.
 - Boundary layer conditioning via surface shaping (e.g. bumps)
 - Boundary layer diversion via intake shaping (forward swept intakes, NACA intakes)
- Efficient ways of accommodating distorted in-flows

Lip Separation Problem (1)

Lip planform

 Highly swept planforms can lead to locally high lip loading which is potentially a problem for high mass flow ratio operation (e.g. static and take-off regimes)

Contraction ratio

- High CR desirable for performance and compatibility at static, take-off and manoeuvre conditions
- But, combining high CR and high cruise mass flow ratio would mean:
 - Even higher throat Mach number
 - Even higher internal diffusion requirement

Practical Considerations:Lip Separation Problem (2)

- Spillage drag
 - High cruise mass flow ratio, so spill drag issue should tend to be of reduced significance
 - But still potentially an issue in the case of very high lip sweep and/or sharp lips

Research Requirements: Intake Entry and Lip Shaping

- Ways of improving the static and take-off performance of fixed-geometry intakes
- Aerodynamics of highly compromised intake lip profiles (e.g. sharp / bi-convex of varying thickness)

Diffuser Flows

- Diffuser likely to provide the most significant contribution to thrust loss at cruise
- High diffuser off-set will tend to significantly increase pressure loss, distortion and swirl so great care is required in design
- Benefits likely through tailoring of area distribution, cross sectional shape / local wall curvature
- Flow control systems could offer very significant benefits
 - Suppression of flow separation
 - Re-distribution of low energy flow

Research Requirements: Diffusers

- Parametric study of compact diffusers with high aspect ratio entries (both with and without obscuration) using a combination of experiment and CFD
- Ways of reducing total pressure distortion and swirl in compact diffusers with minimal additional diffuser loss
 - e.g. flow control systems of various forms
- Novel approaches to diffusion and screening

Research Requirements: Prediction Methods

- Effective, rapid, methods for the estimation of the contribution of intake components to intake performance (e.g. semi-empirical) for preliminary design
- Methods for the prediction of complex flows (including time-variant flows) in complex intake and diffuser combinations both with and without flow control systems
- Methods for the optimisation of complex intake and diffuser combinations both with and without flow control systems

Conclusions

- Unmanned and LO . . . New freedoms but many new design challenges
- Systematic research on basic intake and duct parameters is required to extend the current knowledge into the full UCAV intake design space
- There is plenty of scope for novel solutions
- A high degree of integration with the airframe is likely to be required
 - ... so rapid estimation methods are needed more than ever at the conceptual design stage
- High-order CFD systems can capture key flow features of interest
 - . . . target is cost-effective prediction of absolute performance levels
- Optimisation methods could be of great assistance in the later stages of the design process

Thanks for your attention!

